Tag Archives: CASCI

New CASCI papers on Complex Networks

Network Science Journal
Network Science

Read new papers from CASCI on developing the mathematical toolbox available to deal with computing distances on weighted graphs, applying distance closures for computational fact checking, and computing multi-scale integration in brain networks:

T. Simas and L.M. Rocha [2015].”Distance Closures on Complex Networks”. Network Science, doi:10.1017/nws.2015.11.

G.L. Ciampaglia, P. Shiralkar, L.M. Rocha, J. Bollen, F. Menczer, A. Flammini [2015]. “Computational fact checking from knowledge networks.” PLoS One. In Press. arXiv:1501.03471.

A. Kolchinsky, M. P. Van Den Heuvel, A. Griffa, P. Hagmann, L.M. Rocha, O. Sporns, J. Goni [2014]. “Multi-scale Integration and Predictability in Resting State Brain Activity”. Frontiers in Neuroinformatics, 8:66. doi: 10.3389/fninf.2014.00066.

NIH Project to study Drug-Drug Interaction


Prof. Luis Rocha from CNETS at IU Bloomington, Prof. Lang Li from IUPUI Medical School, and Prof. Hagit Shatkay from the University of Delaware have been awarded a four-year, $1.7M grant from NIH/NLM to study the large-scale extraction of drug-Interaction from medical text. Drug-drug interaction (DDI) leads to adverse drug reactions, emergency room visits and hospitalization, thus posing a major challenge to public health. To circumvent risk to patients, and to expedite biomedical research, both clinicians and biologists must have access to all available knowledge about potential DDI, and understand both causes and consequences of such interactions. However, mere identification of interactions does not directly support such understanding, as evidence for DDI varies broadly, from reports of molecular interactions in basic-science journals, to clinical descriptions of adverse-effects in a myriad of medical publications. This project will develop tools that focus directly on large-scale identification and gathering of various types of reliable experimental evidence of DDI from diverse sources. The successful completion of the project will provide clinicians and biologists with substantiated knowledge about drug interactions and with informatics tools to obtain such information on a large-scale, laying the basis for preventing adverse drug reactions and for exploring alternative treatments.