Tag Archives: information networks

Hoaxy: A Platform for Tracking Online Misinformation

diffusion networks of hoaxes in Twitter
Misinformation (yellow/brown) spreads within the healthy (blue) Twittersphere network. Left: chemtrails conspiracies mix with conversations about the sky. Right: antivax campaigns penetrate discussions about the flu.

UPDATE (21 Dec 2016): we just launched Hoaxy, our open platform to visualize the online spread of claims and fact checking.

Continue reading Hoaxy: A Platform for Tracking Online Misinformation

DESPIC team presents Bot Or Not demo and six posters at DoD meeting

IU Bot or Bot poster The DESPIC team at the Center for Complex Systems and Networks Research (CNetS) presented a demo of a new tool named BotOrNot at a DoD meeting held in Arlington, Virginia on April 23-25, 2014.  BotOrNot (truthy.indiana.edu/botornot) is a tool to automatically detect whether a given Twitter user is a social bot or a human. Trained on Twitter bots collected by our lab and the infolab at Texas A&M University, BotOrNot analyzes over a thousand features from the user’s friendship network, content, and temporal information in real time and estimates the degree to which the account may be a bot. In addition to the demo, the DESPIC team (including colleagues at the University of Michigan)  presented several posters on Scalable Architecture for Social Media ObservatoryMeme Clustering in  Streaming DataPersuasion Detection in Social StreamsHigh-Resolution Anomaly Detection in Social Streams, and Early Detection and Analysis of Rumors. See more coverage of BotOrNot on PCWorld, IDS, BBCPolitico, and MIT Technology Review.

Congratulations to Dr. Lilian Weng!

Lilian Weng with her PhD committee
Lilian Weng with her PhD committee

Congratulations to Lilian Weng, who successfully defended her Informatics PhD dissertation titled Information diffusion on online social networks. The thesis provides insights into information diffusion on online social networks from three aspects: people who share information, features of transmissible content, and the mutual effects between network structure and diffusion process. The first part delves into the limited human attention. The second part of Dr. Weng’s dissertation investigates properties of transmissible content, particularly into the topic space. Finally, the thesis presents studies of how network structure, particularly community structure, influences the propagation of Internet memes and how the information flow in turn affects social link formation. Dr. Weng’s work can contribute to a better and more comprehensive understanding of information diffusion among online social-technical systems and yield applications to viral marketing, advertisement, and social media analytics. Congratulations from her colleagues and committee members: Alessandro Flammini, YY Ahn, Steve Myers, and Fil Menczer!

Truthy Team Wins WICI Data Challenge

WICI Data Challenge AwardCongratulations to Przemyslaw Grabowicz, Luca Aiello, and Fil Menczer for winning the WICI Data Challenge. A prize of $10,000 CAD accompanies this award from the Waterloo Institute for Complexity and Innovation at the University of Waterloo. The Challenge called for tools and methods that improve the exploration, analysis, and visualization of complex-systems data. The winning entry, titled Fast visualization of relevant portions of large dynamic networks, is an algorithm that selects subsets of nodes and edges that best represent an evolving graph and visualizes it either by creating a movie, or by streaming it to an interactive network visualization tool. The algorithm is deployed in the movie generation tool of the Truthy system, which allows users to create, in near-real time, YouTube videos that illustrate the spread and co-occurrence of memes on Twitter. Przemek and Luca worked on this project while visiting CNetS in 2011 and collaborating with the Truthy team. Bravo!

Social Dynamics of Science

doi:10.1038/srep01069Read our latest paper titled Social Dynamics of Science in Nature Scientific Reports. Authors Xiaoling Sun, Jasleen Kaur, Staša Milojević, Alessandro Flammini & Filippo Menczer ask, How do scientific disciplines emerge? No quantitative model to date allows us to validate competing theories on the different roles of endogenous processes, such as social collaborations, and exogenous events, such as scientific discoveries. Here we propose an agent-based model in which the evolution of disciplines is guided mainly by social interactions among agents representing scientists. Disciplines emerge from splitting and merging of social communities in a collaboration network. We find that this social model can account for a number of stylized facts about the relationships between disciplines, scholars, and publications. These results provide strong quantitative support for the key role of social interactions in shaping the dynamics of science. While several “science of science” theories exist, this is the first account for the emergence of disciplines that is validated on the basis of empirical data.

Truthy elections analytics tool

Science News cover

Truthy elections diffusion network

Research by our Truthy team was recently featured in New Scientist, USA Today, and the cover story of Science News. The Truthy project, developed by CNetS researchers and doctoral students, aims to study the factors affecting the spread of information — and misinformation — in social media.

The Truthy site charts tweet sentiment and volume related to themes such as social movements and news. It also monitors Twitter  activity to build interactive networks that let visitors visualize the diffusion networks of memes, identify the most influential information spreaders, and explore those influential  feeds and other information about their online activity, such as sentiment and language. Other tools let you map the geo-temporal diffusion of memes, generate YouTube movies that display how hashtags emerge and connect, and download data directly from Twitter. With these analytics, one can begin to ask question such as: How does sentiment change in response to events and memes? What memes survive over time? Who are the most influential users on a particular topic?

For more press coverage go to the Truthy press page.

Competition among memes in a world with limited attention


Meme diffusion networksIn our paper on Competition among memes in a world with limited attention in Nature Scientific Reports, Lilian Weng and coauthors Sandro Flammini, Alex Vespignani, and Fil Menczer report that we can explain the massive heterogeneity in the popularity and persistence of memes as deriving from a combination of the competition for our limited attention and the structure of the social network, without the need to assume different intrinsic values among ideas. The findings have been mentioned in the popular press, including Information Week, The Atlantic, and the Dutch daily NRC.

DARPA award

Prof. Flammini (PI) and Menczer have been awarded a three-year, $2M grant from DARPA in the context of the Social Media in Strategic Communication (SMISC) program, whose primary goal is “to develop a new science of social networks built on an emerging technology base,” Our IU unit leads a three-group team that includes collaborators at Lockheed-Martin Advanced Technology Lab and the University of Michigan. The funded project is aimed at designing and implementing a system to detect online persuasion campaigns.