Tag Archives: NaN

Awards at CCS 2015

Optimized-IU_poster_5_botsThe CNetS poster “The Rise of Social Bots in Online Social Networks” by Emilio Ferrara, Onur Varol, Prashant Shiralkar, Clayton Davis, Filippo Menczer, and Alessandro Flammini won a Best Poster Award at CCS 2015. The poster was presented by Clayton Davis. The results will also appear in the paper “The Rise of Social Bots” to be published in Comm. ACM (in press, preprint).

The paper “Modularity and the Spread of Perturbations in Complex Dynamical Systems” by Artemy Kolchinsky, Alexander J. Gates and Luis M. Rocha, and the poster “Information Theoretic Structures of the French Revolution” by Alexander Barron, Simon DeDeo and Rebecca Spang won additional awards.

Finally, our former postdoctoral scientist Bruno Gonçalves (now tenured faculty member at Aix-Marseille Université) received a Junior Scientist Award from the Complex Systems Society for his contributions to the study of human social behavior from large-scale online attention and behavioral data. This is the second Junior Scientist Award for CNetS (the first was won by Filippo Radicchi).

Congratulations to the CNetS team!


Congratulations to Dr. Lilian Weng!

Lilian Weng with her PhD committee
Lilian Weng with her PhD committee

Congratulations to Lilian Weng, who successfully defended her Informatics PhD dissertation titled Information diffusion on online social networks. The thesis provides insights into information diffusion on online social networks from three aspects: people who share information, features of transmissible content, and the mutual effects between network structure and diffusion process. The first part delves into the limited human attention. The second part of Dr. Weng’s dissertation investigates properties of transmissible content, particularly into the topic space. Finally, the thesis presents studies of how network structure, particularly community structure, influences the propagation of Internet memes and how the information flow in turn affects social link formation. Dr. Weng’s work can contribute to a better and more comprehensive understanding of information diffusion among online social-technical systems and yield applications to viral marketing, advertisement, and social media analytics. Congratulations from her colleagues and committee members: Alessandro Flammini, YY Ahn, Steve Myers, and Fil Menczer!

Truthy Team Wins WICI Data Challenge

WICI Data Challenge AwardCongratulations to Przemyslaw Grabowicz, Luca Aiello, and Fil Menczer for winning the WICI Data Challenge. A prize of $10,000 CAD accompanies this award from the Waterloo Institute for Complexity and Innovation at the University of Waterloo. The Challenge called for tools and methods that improve the exploration, analysis, and visualization of complex-systems data. The winning entry, titled Fast visualization of relevant portions of large dynamic networks, is an algorithm that selects subsets of nodes and edges that best represent an evolving graph and visualizes it either by creating a movie, or by streaming it to an interactive network visualization tool. The algorithm is deployed in the movie generation tool of the Truthy system, which allows users to create, in near-real time, YouTube videos that illustrate the spread and co-occurrence of memes on Twitter. Przemek and Luca worked on this project while visiting CNetS in 2011 and collaborating with the Truthy team. Bravo!

Congratulations Jacob!

Dr. Jacob

Congratulations to Dr. Jacob Ratkiewicz! Jacob successfully defended his dissertation titled The Expression of Human Behavior in Online Networks on May 2, 2011 and will take a position at Google in July. We will miss him!

Truthy tool identifies smear tactics on Twitter

Astroturfers, Twitter-bombers and smear campaigners need beware this election season as a group of leading Indiana University information and computer scientists today unleashed Truthy.indiana.edu, a sophisticated new Twitter-based research tool that combines data mining, social network analysis and crowdsourcing to uncover deceptive tactics and misinformation leading up to the Nov. 2 elections. Combing through thousands of tweets per hour in search of political keywords, the team based out of IU’s School of Informatics and Computing will isolate patterns of interest and then insert those memes (ideas or patterns passed by imitation) into Twitter’s application programming interface (API) to obtain more information about the meme’s history.

In the run-up to the mid-term elections, Truthy uncovered a number of abuses such as robot-driven traffic to politician websites and networks of bot accounts controlled by individuals to promote fake news. These findings have been widely covered in the press, with mentions in The Atlantic, MIT Technology Review, PC World, New Scientist, NPR, Ars Technica, Fast Company, The Chronicle of Higher Education, The New York Times Magazine, and many other media. Read more here and here.