In the groundbreaking new PBS series “NetWorld,” Niall Ferguson visits network theorists, social scientists and data analysts (including at CNetS!) to explore the intersection of social media, technology and the spread of cultural movements. Reviewing classic experiments and cutting-edge research, NetWorld demonstrates how human behavior, disruptive technology and profit can energize ideas and communication, ultimately changing the world.
The book A First Course in Network Science by CNetS faculty members Filippo Menczer and Santo Fortunato and CNetS PhD graduate Clayton A. Davis was recently published by Cambridge University Press. This textbook introduces the basics of network science for a wide range of job sectors from management to marketing, from biology to engineering, and from neuroscience to the social sciences. Extensive tutorials, datasets, and homework problems provide plenty of hands-on practice. The book has been endorsed as “Rigorous” (Alessandro Vespignani), “comprehensive… indispensable” (Olaf Sporns), “with remarkable clarity and insight” (Brian Uzzi), “accessible” (Albert-László Barabási), “amazing… extraordinary” (Alex Arenas), and “sophisticated yet introductory… an excellent introduction that is also eminently practical” (Stephen Borgatti). It was ranked by Amazon #1 among new releases in physics. More…
Indiana University will establish a $6 million research center to study the role of media and technology in society. With leadership by CNetS faculty, the Observatory on Social Media will investigate how information and misinformation spread online. It will also provide students, journalists and citizens with resources, data and training to identify and counter attempts to intentionally manipulate public opinion. Major support for the center comes from the John S. and James L. Knight Foundation, which will contribute $3 million, as well as funds from the university. The center is a collaboration between the IU School of Informatics, Computing and Engineering, The Media School and the IU Network Science Institute. More…
A team of CNetS researchers has created the first global map of labor flow in collaboration with the world’s largest professional social network, LinkedIn. The work is reported in the journal Nature Communications. The study’s lead authors are Jaehyuk Park and Ian Wood, PhD students working with YY Ahn. Wood is currently a software engineer at LinkedIn. Other authors on the study are CNetS PhD student Elise Jing; Azadeh Nematzadeh of S&P Global, who contributed to the study as a CNetS PhD student; Souvik Ghosh of LinkedIn; and Michael Conover, a CNetS PhD graduate and senior data scientist at LinkedIn at the time of the study. CNetS researchers created the map using LinkedIn’s data on 500 million people between 1990 and 2015, including about 130 million job transitions between more than 4 million companies. The researchers gained access to this data as one of only two teams — IU and MIT — selected to continue their work on the LinkedIn Economic Graph Research program beyond 2017. The study’s result represents a powerful tool for understanding the flow of people between industries and regions in the U.S. and beyond. It could also help policymakers better understand how to address critical skill gaps in the labor market or connect workers with new opportunities in nearby communities. More…
UPDATE: This paper is ranked #3 most read among all articles published by Nature Communications in 2018
Analysis by CNetS researchers of information shared on Twitter during the 2016 U.S. presidential election has found that social bots played a disproportionate role in spreading misinformation online. The study, published in the journal Nature Communications, analyzed 14 million messages and 400,000 articles shared on Twitter between May 2016 and March 2017 — a period that spans the end of the 2016 presidential primaries and the presidential inauguration on Jan. 20, 2017. Among the findings: A mere 6 percent of Twitter accounts that the study identified as bots were enough to spread 31 percent of the low-credibility information on the network. These accounts were also responsible for 34 percent of all articles shared from low-credibility sources. The study also found that bots played a major role promoting low-credibility content in the first few moments before a story goes viral. Continue reading Twitter bots play disproportionate role spreading misinformation→
Congratulations to Clayton A. Davis, who successfully defended his PhD dissertation titled “Collect, Count, and Compare”: Expanding Access and Scope of Social Media Analysis. Dr. Davis’ work explored ways to facilitate research using massive social data through tools that are friendly for non-technical users, robust to manipulation by social bots, and that offer strict anonymity guarantees. His work has been featured on the cover of Communications of the ACM and quoted in top worldwide media venues. Web interfaces for his projects, including Botometer, Kinsey Reporter, and the Observatory on Social Media, have served millions of queries to thousands of Internet users. Davis has also made key pedagogical contributions, and co-authored a textbook on network science to be published later this year by Cambridge University Press.
Congratulations to Rion Correia, who successfully defended his PhD dissertation on Prediction of Drug Interaction and Adverse Reactions, with data from Electronic Health Records, Clinical Reporting, Scientific Literature, and Social Media, using Complexity Science Methods. Dr. Correia’s research used network science, machine learning, and data science to uncover population-level associations of drugs and symptoms, useful for public health surveillance. His findings show that Social Media (Instagram and Twitter) and Electronic Health Records of an entire city in Southern Brazil, are very useful to reveal how the Drug interaction phenomenon varies across distinct groups. For instance, he identifying gender biases and specific communities of interest in chronic disease (e.g. Epilepsy and Depression). In addition to Complex Networks and Systems, his dissertation contributes to the fields of biomedical informatics and precision public health by leveraging heterogeneous data sources at multiple levels to understand population and individual pharmacology differences and other public health problems.
Congratulations to Dimitar Nikolov, who successfully defended his PhD dissertation on Information Exposure Biases in Online Behaviors. Dr. Nikolov’s research explored the unintentional biases introduced by filtering, ranking, and recommendation algorithms that mediate our online consumption of information. His findings show that our reliance on modern online technologies limits exposure to diverse points of view and makes us vulnerable to misinformation. In particular, he analyzed two massive Web traffic datasets to quantify the popularity and homogeneity bias of several popular online platforms including social media, email, personalized news, and search engines. He also leveraged Twitter data to characterize the link between political partisanship and vulnerability to online pollution, such as fake news, conspiracy theories, and junk science. His dissertation contributes to the field of computational social science by putting the study of bias in information consumption and derived phenomena like political polarization, echo chambers, and online pollution on a more firm quantitative foundation.
Filippo Menczer, a professor of computer science and informatics at CNetS, appeared on a panel of experts to discuss the emergence and dissemination of misinformation, and how it threatens society at the annual meeting of American Association for the Advancement of Science in Washington, D.C., Feb. 15.
Menczer was a part of a three-person panel and presented a talk, “Eight Ways Social Media Makes Society Vulnerable to Misinformation.” The talk provided an overview of ongoing network analytics, modeling, and machine learning efforts to study the viral spread of misinformation and to develop tools for countering the online manipulation of opinions. Menczer has previously developed systems such as Botometer, which detects social media bots, and Hoaxy, which maps the diffusion of low-credibility content.