Tag Archives: complex systems

We’re moving and hiring!
We have two big announcements! First, CNetS (along with IUNI and OSoMe) is moving to the new Luddy Center for Artificial Intelligence. Second, we have a new tenure-track assistant professor position in Artificial Intelligence and Network Science. We welcome any candidates who study AI, complex systems, and network science (all broadly defined). Potential research areas include, but are not limited to, deep learning, graph neural networks, complex systems, complex networks, computational neuroscience, computational social science, social media analytics, agent-based models, and the impacts of AI and social media on society. We especially welcome applications from members of underrepresented groups in computing. More info and application here!
CNETS professors create complex systems on the dance floor
“On the last Friday of each month, instead of heading home to their families after the weekly School of Informatics, Computing and Engineering faculty meeting, professors Luis Rocha and Johan Bollen head to the Root Cellar Lounge and become DJ E-Trash and DJ Angst. […] Both Bollen and Rocha are considered experts in the field of complex networks and systems, and they agree that when they DJ, they are part of just the kind of complex systems they study”. See full article at IU News.
CNETS PhD Program central in new $3 million NSF Training Grant
The National Science Foundation has awarded nearly $3 million to train future research leaders in Complex Networks and Systems, via the PhD Program established by CNETS faculty. The highly selective grant from the NSF’s Research Traineeship Award will create a dual Ph.D. program at Indiana University to train graduate students to be proficient in both a specific discipline, such as psychology or political science, as well as network, complexity and data science. The new Ph.D. program will also leverage the strengths of the Indiana Network Science Institute, or IUNI, to involve students in interdisciplinary research.”The biggest challenges currently faced by society require large teams of people who are ‘fluent’ in more than one scientific discipline,” said Luis Rocha, CNETS professor in the IU School of Informatics, Computing, and Engineering who will lead the new program. “But the current education model in academia is still largely focused on training researchers who know how to set up independent labs with agendas driven by a single person. If we want to take on the really big problems, we’ve got to create more scientists with deep expertise in multiple areas.” Full Press Release Available.
New Ph.D. Graduate
Congratulations to Santosh Manicka for successfully defending his dissertation entitled “The Role of Canalization in the Spreading of Perturbations in Boolean Networks” on April 24th 2017, Supervised by Luis Rocha. Santosh completed a PhD degree in the Complex Systems track of the Informatics PhD Program.
New Ph.D. Graduate
Congratulations to Alexander Gates for successfully defending his dissertation entitled “The anatomical and effective structure of complex systems” on April 3rd 2017, co-supervised by Randy beer and Luis Rocha. Alex completed a dual-PhD degree in the Complex Systems track of the Informatics PhD Program as well as the Cognitive Science program at Indiana University. Alex has accepted a postdoctoral position at Northeastern University at the Center for Complex Network Research.
Emilio Ferrara receives Junior Scientific Award at CSS’16
Congratulations to Emilio Ferrara for winning the 2016 Junior Scientific Award from the Complex Systems Society (CCS), which unveiled the winners of the CSS scientific awards in a packed plenary session at ECCS’16 in Amsterdam, the Netherlands. Continue reading Emilio Ferrara receives Junior Scientific Award at CSS’16
Control of Complex Networks
Network science has allowed us to understand the organization of complex systems across disciplines. However, there is a need to understand how to control them; for example, to identify strategies to revert a diseased cell to a healthy state in cancer treatment. Recent work in the field—based on linear control theory—suggests that the controllability of complex systems can be predicted solely from the graph of interactions between variables, without considering their dynamics. Such graph-based approaches have been used, for instance, to suggest that biological systems are harder to control and have appreciably different control profiles than social or technological systems. The methodology has also been increasingly used in many applications from financial to biochemical networks.
In work published today in Nature Scientific Reports, CNetS graduate student Alexander Gates and Professor Luis Rocha demonstrate that such graph-based methods fail to characterize controllability when dynamics are introduced. The study computed the control profiles of large ensembles of multivariate systems as well as existing Systems Biology models of biochemical regulation in various organisms.
Artemy Kolchinsky, recent Postdoc at the Santa Fe Institute
Recent CASCI Complex Systems & Networks Phd program graduate Artemy Kolchinsky, is now a postdoc at the Santa Fe Institute. While at SFI, Kolchinsky is working with “David Wolpert on several projects related to optimal use of information and prediction. One is the problem of modeling and analyzing complicated dynamical systems that require large amounts of time and computational power to simulate. […] Another project investigates connections
between information processing and statistical physics. […] The two are [also] beginning to work on understanding why different social groups develop different organizations, whether the group is a prehistoric tribe or a business firm.” More details on the SFI update newsletter.
CNetS team studies generalized modularity in complex networks & Systems
Modularity in complex systems can be observed in networks and across dynamical states, time scales, and in response to different kinds of perturbations. In a paper published in Physical Review E (Rapid Communication), Kolchinsky, Gates & Rocha propose a principled alternative to detecting communities in static and dynamical networks. The method demonstrates that standard modularity measures on static networks can be seen as a special case of measuring the spread of perturbations in dynamical systems. Thus, the new method offers a powerful tool for exploring the modular organization of complex dynamical systems.