Tag Archives: data

CNetS team winner in LinkedIn Economic Graph Challenge

The CNetS team
The CNetS team

LinkedIn announced that YY Ahn and his team of Ph.D. students from the Center for Complex Networks and Systems Research, including Yizhi Jing, Adazeh Nematzadeh, Jaehyuk Park, and Ian Wood, is one of the 11 winners of the LinkedIn Economic Graph Challenge.

Their project, “Forecasting large-scale industrial evolution,” aims to understand the macro-evolution of industries to track businesses and emerging skills. This data would be used to forecast economic trends and guide professionals toward promising career paths.

“This is a fascinating opportunity to study the network of industries and people with unprecedented details and size. All of us are very excited to collaborate with LinkedIn and our LinkedIn mentor, Mike Conover, who is a recent Informatics PhD alumnus, on this topic,” said Ahn. Read more…

Truthy Team Wins WICI Data Challenge

WICI Data Challenge AwardCongratulations to Przemyslaw Grabowicz, Luca Aiello, and Fil Menczer for winning the WICI Data Challenge. A prize of $10,000 CAD accompanies this award from the Waterloo Institute for Complexity and Innovation at the University of Waterloo. The Challenge called for tools and methods that improve the exploration, analysis, and visualization of complex-systems data. The winning entry, titled Fast visualization of relevant portions of large dynamic networks, is an algorithm that selects subsets of nodes and edges that best represent an evolving graph and visualizes it either by creating a movie, or by streaming it to an interactive network visualization tool. The algorithm is deployed in the movie generation tool of the Truthy system, which allows users to create, in near-real time, YouTube videos that illustrate the spread and co-occurrence of memes on Twitter. Przemek and Luca worked on this project while visiting CNetS in 2011 and collaborating with the Truthy team. Bravo!

Kinsey Reporter launch

Kinsey Reporter App
Kinsey Reporter App

UPDATE: With legal review completed, we re-launched Kinsey Reporter V.2!

CNetS, in collaboration with The Kinsey Institute, has released Kinsey Reporter, a global mobile survey platform for collecting and sharing anonymous data about sexual and other intimate behaviors. The pilot project allows citizen observers around the world to use free applications now available for Apple and Android mobile platforms to not only report on sexual behavior and experiences, but also to share, explore and visualize the accumulated data.

This new platform will allow us to explore issues that have been challenging to study until now, such as the prevalence of unreported sexual violence in different parts of the world, or the correlation between various sexual practices like condom use, for example, and the cultural, political, religious or health contexts in particular geographical areas.

The Kinsey Institute’s longstanding seminal studies of sexual behaviors created a perfect synergy with research going on at CNetS related to mining big data crowd-sourced from mobile social media. The sensitive domain — sexual relations — added an intriguing challenge in finding a way to share useful data with the community while protecting the privacy and anonymity of the reporting volunteers.

Apps are available for free download at both the Apple iOS and Android app stores — download yours now! (More from IU News Room…)

Dataset of 53.5 billion clicks available

IU Click Collection System
IU Click Collection System

To foster the study of the structure and dynamics of Web traffic networks, we are making available to the research community a large Click Dataset of 13 53.5 billion HTTP requests collected at Indiana University. Between 2006 and 2010, our system generated data at a rate of about 60 million requests per day, or about 30 GB/day of raw data. We hope that this data will help develop a better understanding of user behavior online and create more realistic models of Web traffic. The potential applications of this data include improved designs for networks, sites, and server software; more accurate forecasting of traffic trends; classification of sites based on the patterns of activity they inspire; and improved ranking algorithms for search results.