The National Institutes of Health, under the National Library of Medicine’s program on data science research, awarded a $1.55 million grant to an interdisciplinary team lead by Luis Rocha, a professor of informatics, member of CNETS and the director of the NSF-NRT complex networks & systems program at the School of Informatics, Computing, and Engineering. The four-year project, a collaboration between SICE and the Indiana University School of Nursing, will employ innovative data- and network-science methods to produce myAURA, an easy-to-use web service for epilepsy patients. myAURA will be based on a large-scale epilepsy knowledge graph built by integrating data from social media, electronic health records, patient discussion boards, scientific literature databases, advocacy websites, and mobile app data. The knowledge graph will, in turn, be used to fuel recommendation and visualization algorithms based on the automatic inference of relevant associations. The inference will follow algorithms developed by Rocha’s team to remove redundancy and extract factual information from large knowledge graphs as well as parsimonious network visualizations developed by Katy Börner, Distinguished Professor of Engineering & Information Science at SICE. Continue reading CNetS team awarded NIH grant to improve chronic-disease management with Data and Network Science
Tag Archives: health
The Social Network of Healthcare – How Instagram and Twitter are Providing New Insights
Sponsored by Persistent Systems. Luis Rocha, Director of the Complex Systems PhD track in the School of Information and Computing at Indiana University Bloomington, explains the new software-driven approach to medical research. Big data generated through social media such as Twitter and Instragram provides a far deeper and fuller examination of the impact of medicines and diseases, leading to greater actionable insights to improve the efficacy of prevention and treatment.
CNETS Team Uses Instagram to monitor Drug Interactions and Adverse Reactions

Update: On March 21st, 2016 the paper described below (PMC4720984) was highlighted by Russ Altman from Stanford University in his yearly review as one of 30 important papers of the year in translational bioinformatics.
Using complex networks analysis and social media mining, CNETS researchers from the CASCI team have found that Instagram, a growing social media platform among teens, can be used “to uncover drug-drug interactions (DDI) and adverse drug reactions (ADR).” The work shows that this popular social media service is “a very powerful source of data with great promise in the public-health domain”. The study, “Monitoring Potential Drug Interactions and Reactions via Network Analysis of Instagram User Timelines,” supported by an R01 grant from the National Institutes of Health as well as a gift from Persistent Inc., was recently published and presented at the Pacific Symposium on Biocomputing (PSB 2016), in Hawaii. (PubMed, arXiv). The results are based on almost 7.000 user timelines associated with depression drugs which combined have 5+ million posts.
Continue reading CNETS Team Uses Instagram to monitor Drug Interactions and Adverse Reactions