Tag Archives: information networks

Networks Tool Visualization

New network visualization tool maps information spread

Today the Observatory on Social Media and CNetS launched a revamped research tool to give journalists, other researchers, and the public a broad view of what’s happening on social media. The tool helps overcome some of the biggest challenges of interpreting information flow online, which is often difficult to understand because it’s so fast-paced and experienced from the perspective of an individual account’s newsfeed.

Continue reading New network visualization tool maps information spread
drifter bots

Probing political bias on Twitter with drifter bots

Our latest paper “Neutral bots probe political bias on social media” by Wen Chen, Diogo Pacheco, Kai-Cheng Yang & Fil Menczer just came out in Nature Communications. We find strong evidence of political bias on Twitter, but not as many think: (1) it is conservative rather than liberal bias, and (2) it results from user interactions (and abuse) rather than platform algorithms. We tracked neutral “drifter” bots to probe political biases. In the figure, we see the drifters in yellow and a sample of their friends and followers colored according to political alignment. Large nodes are accounts sharing a lot of low-credibility links.

Continue reading Probing political bias on Twitter with drifter bots

Twitter bots play disproportionate role spreading misinformation

UPDATE: This paper is ranked #3 most read among all articles published by Nature Communications in 2018

Analysis by CNetS researchers of information shared on Twitter during the 2016 U.S. presidential election has found that social bots played a disproportionate role in spreading misinformation online. The study, published in the journal Nature Communications, analyzed 14 million messages and 400,000 articles shared on Twitter between May 2016 and March 2017 — a period that spans the end of the 2016 presidential primaries and the presidential inauguration on Jan. 20, 2017. Among the findings: A mere 6 percent of Twitter accounts that the study identified as bots were enough to spread 31 percent of the low-credibility information on the network. These accounts were also responsible for 34 percent of all articles shared from low-credibility sources. The study also found that bots played a major role promoting low-credibility content in the first few moments before a story goes viral. Continue reading Twitter bots play disproportionate role spreading misinformation

Hoaxy: A Platform for Tracking Online Misinformation

diffusion networks of hoaxes in Twitter
Misinformation (yellow/brown) spreads within the healthy (blue) Twittersphere network. Left: chemtrails conspiracies mix with conversations about the sky. Right: antivax campaigns penetrate discussions about the flu.

UPDATE (21 Dec 2016): we just launched Hoaxy, our open platform to visualize the online spread of claims and fact checking.

Continue reading Hoaxy: A Platform for Tracking Online Misinformation

DESPIC team presents Bot Or Not demo and six posters at DoD meeting

IU Bot or Bot poster The DESPIC team at the Center for Complex Systems and Networks Research (CNetS) presented a demo of a new tool named BotOrNot at a DoD meeting held in Arlington, Virginia on April 23-25, 2014.  BotOrNot (truthy.indiana.edu/botornot) is a tool to automatically detect whether a given Twitter user is a social bot or a human. Trained on Twitter bots collected by our lab and the infolab at Texas A&M University, BotOrNot analyzes over a thousand features from the user’s friendship network, content, and temporal information in real time and estimates the degree to which the account may be a bot. In addition to the demo, the DESPIC team (including colleagues at the University of Michigan)  presented several posters on Scalable Architecture for Social Media ObservatoryMeme Clustering in  Streaming DataPersuasion Detection in Social StreamsHigh-Resolution Anomaly Detection in Social Streams, and Early Detection and Analysis of Rumors. See more coverage of BotOrNot on PCWorld, IDS, BBCPolitico, and MIT Technology Review.

Congratulations to Dr. Lilian Weng!

Lilian Weng with her PhD committee
Lilian Weng with her PhD committee

Congratulations to Lilian Weng, who successfully defended her Informatics PhD dissertation titled Information diffusion on online social networks. The thesis provides insights into information diffusion on online social networks from three aspects: people who share information, features of transmissible content, and the mutual effects between network structure and diffusion process. The first part delves into the limited human attention. The second part of Dr. Weng’s dissertation investigates properties of transmissible content, particularly into the topic space. Finally, the thesis presents studies of how network structure, particularly community structure, influences the propagation of Internet memes and how the information flow in turn affects social link formation. Dr. Weng’s work can contribute to a better and more comprehensive understanding of information diffusion among online social-technical systems and yield applications to viral marketing, advertisement, and social media analytics. Congratulations from her colleagues and committee members: Alessandro Flammini, YY Ahn, Steve Myers, and Fil Menczer!

Truthy Team Wins WICI Data Challenge

WICI Data Challenge AwardCongratulations to Przemyslaw Grabowicz, Luca Aiello, and Fil Menczer for winning the WICI Data Challenge. A prize of $10,000 CAD accompanies this award from the Waterloo Institute for Complexity and Innovation at the University of Waterloo. The Challenge called for tools and methods that improve the exploration, analysis, and visualization of complex-systems data. The winning entry, titled Fast visualization of relevant portions of large dynamic networks, is an algorithm that selects subsets of nodes and edges that best represent an evolving graph and visualizes it either by creating a movie, or by streaming it to an interactive network visualization tool. The algorithm is deployed in the movie generation tool of the Truthy system, which allows users to create, in near-real time, YouTube videos that illustrate the spread and co-occurrence of memes on Twitter. Przemek and Luca worked on this project while visiting CNetS in 2011 and collaborating with the Truthy team. Bravo!