Talk by Hye-Jin Youn

Speaker: Hye-Jin Youn, Santa Fe Institute & Senior Research Fellow, University of Oxford

Title: Lost and found in translation: the universal structure of human lexical semantics

Date: 04/12/2017

Time: 11am

Room: Informatics East 322

Abstract: How universal is human conceptual structure? The way concepts are organised in the human brain may reflect distinct features of cultural, historical, and environmental background in addition to properties universal to human cognition. Semantics, or meaning expressed through language, provides direct access to the underlying conceptual structure, but meaning is notoriously difficult to measure, let alone parameterise. Using cross-linguistic dictionaries, we provide here an empirical measure of semantic proximity between concepts and analyse the structure of a network derived from it. Across languages carefully selected from a phylogenetically and geographically stratified sample of genera, translations of words reveal cases where a particular language uses a single polysemous word to express concepts represented by distinct words in another. We use the frequency of polysemy linking two concepts as a measure of their semantic proximity, and represent the pattern of such linkages by a weighted network. This network is highly uneven and fragmented: certain concepts are far more prone to polysemy than others, and there emerge naturally interpretable clusters that are loosely connected to each other. Furthermore, the networks of different language groups exhibit consistent structures, largely independent of geography, environment, and literacy. We therefore conclude the conceptual structure connecting basic vocabulary studied is primarily due to universal features of human cognition and language use.

 

Bio:Senior Research Fellow, Mathematical Institute, University of Oxford; James Martin Fellow, The Institute for New Economic Thinking at the Oxford Martin School

How do we, humans, understand the world: categorize and accumulate our knowledge, and thereby innovate idea, culture, and technologies? Is there any universal mechanism that governs such innovation process that eventually generates both social and economic wealth across different societies? A common conceptualization of innovation in both the biological and socio-economic domains sees it as an adaptive process of recombinant search over a space of configurational possibilities. I develop a mathematical framework for recombinant search in the space of configurational possibilities supported strongly by empirical data. The better we understand the mechanism of innovation the better we understand the mechanism of wealth creation.

Research goals: Develop a mathematical framework for economic growth through innovation and tacit knowledge accumulation based strongly on empirical data; Understand universality in the way human categorizes the world, accumulates the knowledge, and innovate new technologies.

Fields: PhD and BA in Statistical Physics at Korea Advanced Institute of Science and Technology; The mathematical Institute at University of Oxford; The Institute for New Economic Thinking; applied mathematics, physics, network theory, urban scaling theory, urban economics, urban geography, knowledge spillover, linguistics, lexical semantics, innovation, science of science, economic growth theory.