We're pleased to report several exciting developments in our interdisciplinary project studying information diffusion in complex online social networks. The past year has resulted in several publications. Our results on the Truthy astroturf monitoring and detection system were presented at WWW 2011 and ICWSM 2011. Research into the polarized network structure of political communication on Twitter was presented at ICWSM and received the 2011 CITASA Best Student Paper Honorable Mention. We demonstrated the feasibility of the prediction of individuals' political affiliation from network and text data (SocialCom 2011), a machine learning application that enables large-scale instrumentation of nearly 20,000 individuals' political behaviors, policy foci, and geospatial distribution (Journal of Information Technology and Politics). We're also working on a paper on partisan asymmetries in online political activity surrounding the 2010 U.S. congressional midterm elections.
Our results have been widely covered in the press, including the Wall Street Journal, Science, Communications of the ACM, NPR [1,2], The Chronicle of Higher Education, Discover Magazine, The Atlantic, New Scientist, MIT Technology Review, and many more.
Current and future research is supported by an award from the NSF Interface between Computer Science and Economics & Social Sciences program, and a McDonnell Foundation grant. The former will focus on building an infrastructure for the study of information diffusion in social media, the characterization of meme spread patterns, and the development of sentiment analysis tools for social media. The latter will focus on modeling efforts, especially agent-based models of information diffusion, competition for attention, and the relationship between information sharing events and social network evolution.