
The outcome of the DREAM Challenge on Disease Module Identification in genetic networks has been reported in a paper published in Nature Methods. Over 400 participants from all around the world have contributed 75 different clustering algorithms to predict disease-relevant modules in diverse gene and protein networks. Participants could only use unsupervised clustering algorithms, which rely exclusively on the network structure and do not depend on additional biological information such as known disease genes. CNetS professor Santo Fortunato and former postdoc Lucas Jeub participated in the analysis of the results delivered by the algorithms.
Continue reading DREAM Challenge paper published in Nature Methods